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The variogram model used in estimation and/or simulation is unquestionably important.  
Uncertainty in the variogram must be understood and accounted for in fitting.  This may not be a 
problem with many data; however, geostatisticians are commonly faced with sparse data and 
significant uncertainty in the variogram model.  This paper examines and quantifies the impact of 
data spacing on variogram uncertainty.  A synthetic reference model is considered with a known 
variogram model.  Using this reference model, different sample spacings and data configurations 
are considered for variogram calculation.  For each case, a variogram model is fit and the 
variance of the variogram model and experimental points is quantified.  This provides insight into 
the variability that may be expected in the fitted model as a function of the data spacing.  These 
numerical results are compared to theoretical models of uncertainty. 

Introduction 

While the emergence of multiple point statistics (MPS) has spawned much research into 
multipoint geostatistics, a large faction of practical and theoretical geostatistics remains deeply 
reliant on the variogram.  Unlike MPS, the variogram is a two-point statistic that spatially relates 
two random variables (RV), Z(u) and Z(u+h): 

{ }22 ( ) [ ( ) ( )]E Z Zγ = −h u u + h  

where u and h are location and lag vectors, respectively, in domain A.  Matheron (1965) first 
proposed a method-of-moments approach to approximate the variogram: 
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where N(h) is the number of pairs of data separated by a vector h.  This numerical approximation 
laid the foundation for most theoretical and practical development in the area of variogram 
modeling and uncertainty. 

Given its importance in geostatistical methods such as change of support, kriging and simulation, 
it is not surprising that the issue of variogram uncertainty and fitting has been extensively covered 
in the literature.  Davis and Borgman (1979) developed the characteristic function of the 

variogram estimator, ˆ( )γ h , for an equally-spaced, one-dimensional, stationary Gaussian random 
function (RF) model.  They tabulated the sample distribution of the variogram estimator, using a 
Finite Fourier Transform (FFT) inversion.  In 1982, Davis and Borgman further proved that the 
distribution of the sample variogram is indeed asymptotic: 
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Many authors have focused on the derivation of the variance/covariance matrix of the 
experimental variogram, mainly with the purpose to determine an optimum fit for the variogram.  
David (1977) proposed the use of an ordinary least squares approach to minimize 
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where nh is the number of lags.  Cressie (1985) later approximated the variance of the variogram 
estimates for a Gaussian variable as 
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These were then used for variogram fitting using a weighted least squares (WLS) approach, 
where the weights account for the numbers of pairs within each class.  It can be shown that the 
variogram estimator, for a Gaussian variable, is a linear combination of independent χ-square 
random variables, each with one degree of freedom (Cressie, 1993): 

2
1,

1

ˆ2 ( ) ( )
n

i i
i

γ λ χ
=

=∑h h
 

Cressie goes on to show the use of this result for the robust estimation of the variogram. 

Ortiz and Deutsch (2000) developed an analytical expression for the pointwise variogram 
uncertainty. They calculated the uncertainty in the variogram by assuming a known variogram 
model. They showed that the uncertainty in the variogram is the average covariance between 
pairs of pairs used to calculate the variogram for the particular lag: 
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where  

( ) ( ) ( )[ ] ( ) ( )[ ]{ }22 , huuhuuh +−+−= jjiiij ZZZZCovC  

Pardo-Igúzquiza and Dowd (2001) examined the variance-covariance matrix of the experimental 
variogram, [ ]ˆ ˆ{ ( ), ( )}Cov γ γ ′h h .  Similar to Ortiz and Deutsch’s (2000) approach, this required 
examination of a fourth order statistic; however, the expression developed by Pardo-Igúzquiza 
and Dowd accounts for the joint uncertainty of the variogram between two different lags. 

Marchant and Lark (2004) conducted simulation experiments to estimate variogram uncertainty 
for two simulation field sizes and three different sampling schemes.  Integral to their approach 
was use the use of a generalized least squares (GLS) approach to variogram fitting.  Based on 
these experiments, they concluded that Pardo-Igúzquiza and Dowd’s approach (2001) provided a 
good estimate of variogram uncertainty due to ergodic errors. 
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The purpose of this study is to quantify the relationship between the variogram uncertainty and 
the data spacing for the special case of regular sample spacing.  A synthetic reference model is 
constructed, and several data spacings and configurations are considered for variogram 
calculation and modeling.  Relating variogram uncertainty to data spacing is illustrated by 
examining the variance of the variogram as a function of distance.  Depending on the data 
spacing, one can generate a similar diagnostic chart to examine whether the fitted model falls 
within the expected variability of the variogram given the available data spacing. 

Background 

One can relate each point on a variogram plot to an h-scatterplot, which shows all possible pairs 
of data values whose locations are separated by a certain distance vector h.  Journel (1989) 
described the calculation of the variogram from this h-scatterplot as calculating the moment of 
inertia about the 45º line (see Figure 1). 

 
Figure 1:  Moment of inertia interpretation of the variogram based on an h-scatterplot.  (Redrawn 
from Goovaerts, 1997). 

Based on the distribution of the cloud of points on an h-scatterplot, we can tell how similar the 
data values are over a certain distance in a particular direction (as defined by the lag vector h). If 
the data values at locations separated by h are similar, the pairs will plot close to a 45◦ line.  We 
naturally expect that this cloud of points will show little dispersion at small lag distances, but as h 
increases, this cloud of paired values is expected to increase in dispersion.  This notion of 
dissimilarity (or dispersion) is neatly captured by the variogram. 

The number of pairs available for computing the variogram depends on the lag distance. For 
regularly spaced samples, as the lag separation gets larger there are fewer points, so the method-
of-moments approximation for the variogram is less precise at larger lag distances.  If there are n 
observed data, then there are ( ) 2/1−nn  unique pairs of observations taken over all possible lag 
distances. Thus, even a data set of moderate size generates a large number of pairs. For example, 
if 500 samples are available, there are 124,750 pairs of data if we considered all lags 
simultaneously.  Figure 2 shows a few different lag distances in the case of regular spaced data 
for calculating the experimental variogram.  We can see that depending on the direction, the lag 
spacing considered, and the size of the regular grid, the number of pairs used for calculating the 
variogram can be quite different. 
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In practice, data are rarely exactly regularly spaced.  Sampling campaigns may target nominal 
drillhole/well spacing; however, certain regions of the deposit/reservoir are inevitably more 
densely drilled as they provide more information about the available resource.  As such, real data 
are irregularly spaced and the paired information used in calculating the experimental variogram 
are based on approximate lag separation distances.  Bandwidths about the desired direction, along 
with angle and lag tolerances are often considered (Deutsch and Journel, 1998). 

 

 
Figure 2:  Different Lag Distances in the Case of Regular Spaced Data: h=1 taken vertically 
yields 40 pairs (top left); h=1 taken horizontally results in 42 pairs (top right); h=2 in the 
horizontal direction will give 36 pairs (bottom left); and h=3 in the horizontal direction results in 
30 pairs (bottom right). 

Even after the variogram is numerically calculated, we must still fit the experimental points with 
a positive semi-definite variogram model.  This model is then used in subsequent estimation 
and/or simulation.  Theoretically, we are not constrained to consider any set of models so long as 
positive semi-definiteness of the resulting model is ensured.  Practically, this can be quite 
prohibitive given the challenges associated to validating that this positive semi-definiteness 
condition is guaranteed for all directions and all distances.  As a result, there are a set of 
theoretically validated models that are widely adopted including the nugget, spherical, 
exponential and Gaussian models.  These can be linearly combined in an infinite number of ways 
to fit most experimental variograms.  Gringarten and Deutsch (2001) provide an extensive 
discussion on variogram interpretation and some guidelines on variogram modeling. 

Of course, the uncertainty in calculating an experimental variogram is carried forward and 
somehow resolved by the user when the experimental points are fit with a licit model.  
Specifically there are some key components of the fit that are important: 

• Although the value of the variogram for h = 0 is strictly zero, short scale variability may 
cause sample values separated by extremely small distances (lag) to be quite dissimilar. 
This result in an apparent vertical intercept on the variogram plot that is often referred to 
as the nugget effect. 
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• For a stationary random function, the limit of ‘dissimilarity’ or the variogram value at 
which the variogram points appear to converge to at large lag distances is referred to as 
the sill.  We can also interpret the sill as the value at which paired data are no longer 
correlated to each other, or C(h)=0 where C(h) is the covariance of pairs of data 
separated by h.  The well established relationship between the variogram, covariance and 
variance, ( ) ( ) ( )0C Cγ = −h h , where C(0) represents the variance, demonstrates that 
the sill of the variogram is equivalent to the variance of the data: 

 ( ) ( ) 20Cγ σ∞ = =  

• The range is the lag distance at or near which the variogram reaches the sill; beyond that 
distance the corresponding correlation coefficient is zero. 

The next section describes the problem setting to evaluate the uncertainty in the variogram as a 
function of data spacing.  A very specific scope is considered for this study, and a small example 
is provided for additional insight into this relationship and comparisons with earlier 
approximations from previous authors. 

Problem Setting 

Consider a 2D domain that is discretized into an n x n grid, for which samples are available at a 
regular spacing of m x m units.  While regular sample spacings are not common in practice, 
considering this very particular case permits us to examine several interesting issues related to 
experimental variogram uncertainty.  The calculation of variogram uncertainty is dependent on 
the data configuration and the available number of data pairs found for a specific lag.  In fact, for 
this special case of regular sample spacing, we can quantify exactly (1) the number of data 
configurations given specific sample spacing, and (2) the available number of data pairs that is 
often used to gauge the reliability of a specific variogram value. 

Data configuration is a function of the sample spacing and the field size.  For regular data spacing 
within a square grid, the number of possible configurations can be generalized: 
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where m is the data spacing, n is the size of the discretized grid, and ⎣ ⎦x  is the floor function and 
is equal to the maximum integer number which is less than or equal to x.  For instance, for 2x2 
data spacing in a 1024 x 1024 grid, there are four possible configurations in which the samples 
could have been obtained; for a 3x3 spacing in the same grid, nine sample configurations are 
possible (see Figure 3).  The extension of the four possible 2x2 spacing configurations to the 
1024x1024 grid considered in this example is also shown in Figure 4.  Based on the above 
equation, Figure 5 shows that the number of possible configurations increases and decreases in a 
quadratically symmetric fashion about the mid-grid data spacing. 



 117-6 

  
Figure 3:  Different sample configurations for same data spacing:  (a) 2 x 2 spacing, and (b) 3x3 
spacing. 
 
 

 
Figure 4:  Extension of 2x2 data configuration on a 1024x1024 grid. 
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Figure 5:  Number of configurations in the case of mxm data spacing, in an nxn field. 

In this reasonably well-controlled example, the number of pairs of data can also be determined.  
This information is often used in practice as an indicator of the reliability of an experimental 
variogram value.  In fact, the number of pairs found at a lag vector h in this 2D case is a function 
of the following seven parameters: 

• nx and ny which represent the size of the discretized field in the x direction and y 
direction, respectively; 

• mx and my corresponding to the sample spacing in the x direction and y direction, 
respectively; 

• h which is the lag vector, and in this case of regular sample spacings, h is an integer 
multiple of the sample spacing in a specific direction, i.e. hx= mx, 2mx, and so on. 

• i and j which correspond to indices associated to the first sample closest to the origin of 
the grid (based on GSLIB grid definition).  A simple schematic illustrating the 
specification of the indices is shown for the 2x2 data spacing scenario: 

 
Figure 6:  Indices i,j denote the configuration of samples based on a certain sample spacing; 
shown here for 2 x 2 data spacing. 
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In general we can obtain the number of pairs found at a lag vector h in the x and y directions by: 
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If we assumed an omnidirectional variogram at a spacing of h, then the number of pairs in both 
directions can simply be added together: 
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In the special case where nx and ny can be neatly divided by mx and my respectively, the above 
formula is further simplified and i and j can be removed from the formula: 
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and if nx =ny=n and mx =my=m, then 
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The extension to a 3D case, where the grid is discretized into zyx nnn ××  locations, with a 

regular data spacing of x y zm m m× × , is straightforward.  The number of pairs for an 
omnidirectional is given as: 
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Equation (3) becomes: 
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and Equation (4) becomes 
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Further, the above formula can be generalized for the d-dimensions: 
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The Variance of the Variogram in 2-D case 

Given an m x m data spacing, there are m2 possible configurations and hence m2 possible values 
for the experimental variogram.  Thus the variance of these m2 values for variograms at each h 
can be calculated as 
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Note that ( ) ( )2
ˆ ,mγσ h h  is the variance of the experimental variogram as a function of lag 

distance (h) and data spacing (m), ( ),î jγ h  is the experimental variogram value at lag distance, h, 

for the configuration of (i , j) generated by m x m data spacing. ( )γ̂ h  is the average of the 
experimental variogram values at lag vector of h over m2 possible values for experimental 
variogram. 

Recall that Cressie (1985) approximated the variance of the variogram for a Gaussian variable 
(see Equation (1)).  Given the special case of a regular field where x yn n n= = , and n can be 
neatly divided by the data spacing, m, Cressie’s model can be simplified to 
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The following example compares Cressie’s approximation to the experimental results 
based on a square grid with regular sample spacing. 

Example 

A synthetic 2D Gaussian random field (Figure 7) is generated via an unconditional simulation for 
a 1024 x 1024 grid with the following reference variogram: 

64( ) 0.05 0.95 ( )aSphγ == +h h  

 
Figure 7:  Map of reference model generated by SGSIM. 

Using this reference model, we can then sample at various data spacings and calculate the 
corresponding experimental variogram.  The specific procedure to examine these scenarios is 
summarized below: 

1. Sample the reference model at specific data spacings, such as 2x2, 3x3, and so on. 

2. For each possible configuration given the data spacing: 

a. Calculate the experimental variogram for each possible configuration. 
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b. Fit the experimental variogram using a licit model.  In cases where the number of 
possible configurations is reasonably small, a manual fitting can be performed; 
however, as the data spacing becomes larger and the number of possible 
configurations becomes prohibitively large for manual fitting, a (semi) automatic 
variogram fitting algorithm could also be considered. The results shown in this 
study used the VARFIT program for this task (Larrondo, Neufeld and Deutsch, 
2003; Neufeld and Deutsch, 2004). 

3. Consider all the resultant variogram models, calculate and plot the variance of the 
variogram, ( )[ ]hγσ 2 , as a function of lag distance, h. 

All the tasks above were performed using a combination of GSLIB (Deutsch and Journel, 1998) 
and GSLIB-compatible programs. 

Figure 8 shows the experimental variogram plots for 2x2, 4x4, 8x8, 16x16, 32x32 and 64x64 data 
spacings up to range of 512.  It is obvious that for 2x2 data spacing the lag distance starts from 2, 
for 4x4 from 4, and so on.  Therefore for the 64x64 spacing, there are no experimental points for 
a lag distance less than 64m. The solid line in each plot represents the reference variogram model.  
Clearly, variograms based on the 64x64 data spacing are the most uncertain; this is not surprising 
given that the variogram range coincides with the data spacing. 

The distribution of experimental variogram values at h=192 in the case of 64x64 data spacing is 
shown in Figure 9. Although, the specific case of 64x64 has already been deemed to be the least 
interesting given the variogram range, the distribution of the experimental variogram is 
interesting to consider.  We see that it is an approximately normal distribution, and the reference 
value of 1.0 based on the variogram model is approximately equal to the upper quartile.  Further 
discussions of the variance of the variogram are precisely based on the variance obtained from lag 
histograms of the experimental variogram such as this one. 

Figure 10 shows Cressie’s model for six different data spacings (2x2, 4x4, 8x8, 16x16 , 32x32 
and 64x64) based on the same reference variogram for this 1024x1024 field. We see that at a 
constant h, as data spacing, m, increases, the variance of the variogram also increases. At constant 
data spacing, m, as h increases the variance increases.  This increase is more pronounced below 
the reference range (h=64), and then dramatically flattens beyond the range. Similar to the 
experimental case, for a particular mxm data spacing, there is no value given for h≤m; this is not 
surprising, given the formula that we used for the number of pairs h apart in the case of regular 
spaced data (see Equations 4 and 5). Interestingly, the difference between each two curves that 
can be simply quantified as: 
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the spacing sequentially as 2, 4, 8, 16, 32 and 64), so the above equation reduces to 
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Figure 8:  Calculated experimental variogram for 2x2, 4x4, 8x8, 16x16, 32x32 and 64x64.  For 
each spacing there are m2 different calculated variograms in each plot; the solid black line is the 
reference variogram model. 

 

 
Figure 9:  Distribution of the experimental variogram values at h=192 for 64x64 data spacing. 
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Figure 10:  Variance of the variogram as a function of lag distance for different data spacing for 
Cressie (1985) Model. 

Figure 11 shows the plot of the variance versus the lag distance, h, for the relevant data spacings 
in six different scenarios which are based on considering the variance of the variogram for: (1) 
the experimental points, (2) Cressie’s model, and four possible modeling scenarios under a semi-
automatic variogram fitting algorithm (VARFIT).  The four scenarios involve modeling options 
related to the sill and the nugget effect to be fixed or variant: (a) fixed sill and fixed nugget, (b) 
fixed sill and variant nugget, (c) variant sill and fixed nugget, and (d) variant sill and variant 
nugget. 

From Figure 11, we can see that the variance for the experimental variogram and the variance 
from Cressie’s model have the same behavior for high lag distances. This behavior can also be 
seen in the last two figures for the case of variant sill-fixed nugget and variant sill-variant nugget. 
For the two cases of fixed sill (regardless of the nugget option), the variance of the variogram for 
the high lag distances is zero (and beyond a certain lag distance, cannot be shown in this semilog 
plot). These results are not surprising given that the impact of a variant sill will certainly yield a 
non-zero variance in the variogram beyond the range, while fixing the sill results in a distribution 
of the variogram (for h>a) that is a spike. 

To gain a better appreciation for the variogram distributions and the impact of modeling options, 
Figure 12 shows the variogram distributions for these four modeling cases along with the 
experimental case is shown for a lag distance of 16 for the 8x8 data spacing. In general, all cases 
show an approximately normal distribution.  The box plot reveals the impact of each case relative 
to the reference variogram model value at h=16 which is equal to 0.3988.  We see that in all but 
the case of variant sill-variant nugget, the distribution of variogram values is systematically lower 
than the model value.  Interestingly, this includes the experimental points. 
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Figure 11:  Variance of the variogram as a function of lag distance for different data spacing 
calculated for experimental variogram points (top left), for Cressie’s (1985) model by using the 
reference model (top right) and for four different variogram models generated by VARFIT: fixed 
sill and fixed nugget effect (middle left), fixed sill and variant nugget effect (middle right), 
variant sill and fixed nugget effect (lower left), variant sill and variant nugget effect (lower right). 
The vertical dash line shows the range of the reference variogram. 
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Figure 12:  Histograms of variogram values at h=16 for 8x8 data spacing: experimental 
variogram (top row), fixed sill and fixed nugget (second row), fixed sill and variant nugget (third 
row), variant sill and fixed nugget (fourth row), variant sill and variant nugget (last row). 
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Figure 13 shows the plot of the variance of the variogram as a function of data spacing at fixed 
h=64 (the reference variogram range) in log-log plot for six different scenarios, the experimental 
variogram, the Cressie’s model (the straight line), and four other cases that are generated by 
VARFIT. It can be seen from the plot that the variance of the variogram at each spacing from 
Cressie’s model (the straight line) is systematically higher than the other five cases.  Among these 
five cases, the experimental variogram and the two variant sill cases (regardless of nugget option) 
are virtually coincident with each other and are most similar to Cressie’s model compared to the 
fixed sill cases.  

 
Figure 13:  Variance of the variogram as a function of data spacing, m, at h=64 for six different 
scenarios: experimental variogram, Cressie’s Model (the straight line), VARFIT with fixed sill 
and fixed nugget, VARFIT with fixed sill and variant nugget, VARFIT with variant sill and fixed 
nugget, VARFIT with variant sill and variant nugget). 

Figure 14 shows the output of VARFIT for the four possible combinations of fixed sill or nugget 
and variant sill or nugget for the case of 32x32 data spacing. By fixing either nugget or sill, the 
variance of the variogram at h=0 and also at large values is equal to zero. In the case of fixing 
both sill and nugget, it is obvious that the uncertainty at lag distance of zero and at large lag 
distances are zero. For this case we can see that the variance of the variogram is artificially low 
for small and large lag distances h, and appears artificially high in between.  For the case of fixed 
sill and variant nugget (the top right plot in Figure 14), allowing the nugget to vary permits great 
flexibility for the nugget to take on a large range of values in order to minimize the squared error 
in the overall fit, and as a result we see that this results in an artificially high variance at h=0.  
This is also evident in the fourth case where the sill is permitted to change along with the nugget.  
For the third case, fixed nugget and variant sill, again there is no variance at zero lag distance but 
as h increases the variance of the variogram is quite stable. For the last case where both the sill 
and nugget vary, the variance of the variogram is non-zero at both small and large lags. This last 
case is likely the most realistic as neither the nugget nor the sill can be predetermined.  Despite 
this, we see that Cressie’s model best approximates the case of fixed nugget and variant sill (see 
Figure 11). 

To see the impact of the sill (first column of plots in Figure 14), we can examine the variance of 
the variogram as a function of the lag distance for the case of 16x16 and 32x32 data spacing (see 
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Figure 15).  In both figures, the variance increases as h increases for small lag distances but when 
the sill is fixed the variance decreases dramatically near the reference range; if the sill is 
permitted to change, the variance function appears to flatten as it approaches the range.  

 
Figure 14:  Variogram models for 32x32 by using VARFIT; There are four different cases: fixed 
sill and fixed nugget, fixed sill and variant nugget, variant sill and fixed nugget, variant sill and 
variant nugget; the solid thick line in black is the reference variogram model. 
 
 

 
Figure 15:  Plot of variance of the variogram versus lag distance, h, for 16x16 and 32x32 
spacings; nugget effect in VARFIT is fixed in both plots, fixed sill (left) and variant sill (right). 
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Conclusions and Future Work 

There are many issues in establishing a variogram model fit for geostatistical applications 
including clustered and noisy data and subjective choice of calculation and fitting parameters.  
This paper considered regularly gridded data and the impact of choices related to the calculation 
and fitting of experimental values. As the spacing of the data increases, the variance of the 
variogram also increases.  Depending on the modeling choice, the variance in small lag distances 
can be much higher compared to large lag distances.  A comparison with Cressie’s approximation 
shows that Cressie’s model is fairly accurate for the case of fixing the nugget effect and allowing 
the sill to vary; this is counter-intuitive to the real data scenario where neither parameters are 
usually known well enough to fix them beforehand.  Nevertheless, for a fixed lag distance, the 
uncertainty in the variogram as a function of data spacing shows a similar increasing trend as 
Cressie’s model. 
 
This paper examined many different facets of variogram uncertainty, yet the areas for further 
exploration remain a relatively open field.  This includes possible work in the following:  (1) 
application of other theoretically derived models of variogram uncertainty, including a 
comparison to Ortiz and Deutsch’s (2001) model; (2) consideration of clustered samples which 
would be most realistic, but this may be highly intractable; and (3) consideration of non-Gaussian 
random fields. 
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